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Zeta function zeros, powers of primes, and quantum chaos
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We present a numerical study of Riemann’s formula for the oscillating part of the density of the primes and
their integer powers. The formula consists of an infinite series of oscillatory terms, one for each zero of the zeta
function on the critical line, and was derived by Riemann in his paper on primes, assuming the Riemann
hypothesis. We show that high-resolution spectral lines can be generated by the truncated series at all integer
powers of primes and demonstrate explicitly that the relative line intensities are correct. We then derive a
Gaussian sum rule for Riemann’s formula. This is used to analyze the numerical convergence of the truncated
series. The connections to quantum chaos and semiclassical physics are discussed.
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I. INTRODUCTION unitary ensembléGUE) distribution of the Riemann zeros.
Nevertheless, it is possible to generate the almost-
The Riemann zeta function is at the heart of numbemuncorrelated sequence of the primes from the interference of
theory and has also played a pivotal role in the study othe highly-correlated Riemann zeros.
quantum chao§l]. There is a deep connection between the As mentioned above, from the perspective of semiclassi-
complex zeros of the zeta function and random matrix theorgal periodic orbit theory, the density of the Riemann zeros
[2]. The zeros possess the same statistical properties as thas the structure of a dynamical trace formula with periodic
energy eigenvalues of a dynamical Hamiltonian that is nonorbits. It is natural to ask whether Riemann’s formula is a
integrable and whose dynamics are not time-reversal invarfrace formula for the primes. Despite having the oscillatory
ant. Unfortunately, this Hamiltonian is not known in terms of terms, as discussed below, Riemann's formula is not a trace
its dynamical variables. The main source of insight into thisformula of dynamical origin. But, this does not preclude the
unknown quantum chaotic system comes from Gutzwiller'sexistence of a trace formula for the primes. If one does exist,
pioneering Worl{S], which expresses the Osci”atory part of then this would Support the notion that th-ere eXiS.tS a Hamil-
the quantum density of states as a sum over classical periodighian system whose quantum spectrum is the primes. In any
orbits. (Such sums are now referred to as trace formulas. Case, the exclusion of Riemann’s formula as a trace formula
is well known that the oscillatory part of the density of the suggests that there would be no correspondence between the
Riemann zeros is given by a Gutzwiller-like sum, with oneclassical dynamics and the Riemann zeros for this system.
periodic term for every integer power of a prime nump#r The purpose of this paper is to study the density of the
(A smoothed density of the Riemann zeros has also beeprimes from the perspective of numerical semiclassics. To
studied in Ref[5].) From this perspective, one can infer that Our knowledge, Riemann’s series has not been studied nu-
a spectrum consisting of the Riemann zeros is generated by'gerically. We first verify that Riemann’s formula does pro-
Hamiltonian (albeit unknow) whose classical orbits have duce spectral lines at the positions of the primes and their
actions that are |ogarithms Of primes and integer powers Oi'rlteger pOWerS, even when the series is truncated. This is not
primes. completely unexpected since Riemann’s series converges
Conversely, one could ask whether it is also possible t¢onditionally to the exact density which is a setd@function
calculate the prime number sequence from a sum of osci”aSDik@S. However, thé functions arise from thentire series.
tory terms, with one term for every zero of the zeta function.The truncated series is an approximation to the exact density.
A|though less W|de|y known, such a series was actua||>ﬂt does not erId Spikes, but rather lines of various widths,
given by Riemann himself6]. Riemann derived an exact heights, andunknown shapes and it is not at all obvious
formula for the density of the primgand their integer pow- that the relative line intensities of the truncated series are
erg that can be expressed as the sum of a smooth functiofPrrect. We examine this problem both numerically and ana-
and an infinite series of oscillatory terms involving the com-lytically. We then provide a simple rule for estimating the
p|ex zeros of the zeta function. The smooth part has beeﬁame of the Iargest Zero required to sufficiently resolve indi-
thoroughly studied in the context of the prime number theovidual lines of a specific shape in some interval of interest,
rem whereas the Osci”atory part has been |arge|y ignore(ﬁnd describe how to control the error incurred from a trun-
Interestingly, it is the latter that contains the essential inforcation of the series.
mation about the location of the primes, as shown below.
There is a vast literature on the distribution of the prime Il. RIEMANN’S FORMULA
numbers. It is recognized that their distribution exhibits glo-
bal regularity and local irregularity7]. The nearest-neighbor Ve start from the Euler product formula
spacings(NNS) of the primes is known to be Poisson-like
[8],. correspo_nding to. an aIm_ost uncorrelated random di;tri— 5(/3):1—[ (1-p A", Reg>1, (1)
bution. This is very different in character from the Gaussian p
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where the product is over all primgs. It follows that 1600 - - - ' - ' - ' '
Zp2n-1 (1/n)exp(—_n,8|n p).=ln {(B). Dividing both sides 1400l 40
by B8 and then taking the inverse Laplace transform of both 30
sides with respect t&, we immediately obtain 1200 20
10
1 1 [a+i=In¢(B) 1000] 0
= — — M= 2" aBE
N(E) §p‘, ; ~O(E-Inp")=5_ LB ® ds, _ ool B
(2) ‘a sool 78 80 82 84
wherea>1. Riemann evaluated the right-hand siRHS) 400}
of Eqg. (2) to obtainN(E). Upon differentiation with respect
to E and the subsequent substitutior €%, we obtain den- 200y ” ‘ l
sity p(x) of p"/n along the real axix as 0 |||!'||"!!|'“' [ P T I S D S
1 1 COS(a Inx) _2000 1I0 2IO SIO 4IO 5IO 6I0 7I0 BIO 9IO 100
POO= {0~ x(xz—l)lnx_zgo nx O X

wherex>1. This formula assumes the Riemann hypothesis FIG. 1. The result of computing E¢@), using the first 16zeros

which states that all the infinite numbers of complex zeros oFor x<[1.5,100. The inset shows a closer view of three lines that

. . o L . appear forxe[77,84. The three line shapes are similar, so that
the zeta function lie on the critical ling=(1/2+ia), where their relative heights are somewhat meaningful. However, the line

a is real and positive. Note that explicit use of the Symmetryshapes vary considerably throughout the entire range so that heights
of the complex zeros has been made to reduce the SUMM@snnot he immediately interpreted as relative intensities.

tion to cosine functions. A generalized version of the Rie-
mann formula, where the zeros may lie anywhere in the critito mation than the formula for the density of the printes

cal strip, is given in Ref[9]. We shall denoteNthe SUM OVer powers, which can be obtained from the derivativeofx).
the oscillatory terms on the RHS of E() asp(x). Since

Eq. (3) is exact, it is clear that thé-function spikes o (x) IIl. NUMERICS
must be generated from the interference of the terms). ) .

know that a coarse-grained version of the exact density oferms from Riemann’s infinite series. Although it would
states can be reproduced even from a truncated periodic ortie€M by inspection that all the terms of the series are equally
sum. Therefore, in the following section, we focus on theimportant and that there is no optimal ordering of the terms,
numerical analysis of the truncated series. Riemann states that the series is conditionally convergent
Before presenting the results, however, we briefly review2nd that it must be summed in the order of increasing size of
the pioneering numerical work of Riesel andi®p11]. The @ (For any series whose convergence is conditional, the
left-hand side of Eq(2) is a set of step functions, with unit order of summation must be specified, since different order-
steps at every primg, one-half steps gi?, one-third steps at iNgs produce different resuljsin this case, the “natural or-
p3, and so on, and may be obtained by taking the contoufl€r” is the correct one. Riemann goes on to state that with
integral of IZ(8)/8 on the RHS of the equation. Riemafé]  this ordering, the truncated series should give an approxima-
denotes this function bf(x) and Edwards by(x) [12]. The tion to the density of primesand their powers but that
number of primes less than denoted byw(x), may be USing a dlﬁ‘er’ent ordering, the resulting fln_ltg series coulq
expressed in terms di(x) as approach arbitrary real_ vaIL_le_s. We have verified this numeri-
cally and found that using finite sets of zeros, chosen accord-
ing to different rules, yields incorrect results. Thus, for the
, (4)  numerical work that follows, we use the correct ordering.

i p(mf(x)

77'(X)=n:1 N

where w(n) is the Mdius function[12]. The modulating A. Line intensities of the truncated series

effect of the oscillatory terms due to the first 29 pairs of the We first computed Eq(3) using the first 16 zeros and
complex Riemann zeros was numerically examined by Rieebserved lines at the positions of the primes and their integer
sel and Gal [11] in 1970. This early work showed the ap- powers forx<5000. However, fox>2000, many lines can-
proximate formation of the first few steps at the prime num-not be fully resolved and the signal eventually dies out. This
bers, and modulations for some larger primes. Note thais due to truncation, since only a small number of zeros have
series(4) requires a knowledge of the Maus function, and been included(This will be discussed in more detail belgw.

is much more complicated than E¢B). Riesel and Ghl Nevertheless, even this small number of zeros yields narrow
actually replaced the sum over the ' Mos functions by the lines at the lowest primes. In Fig. 1, we display the result for
Gram series, involving factorials which are difficult to com- x[1.5,100. Although one can clearly observe lines at the
pute accurately for large integers. In this paper, we shalpositions of the primes, the relative intensities cannot be de-
rather study formuld3) for p(x) since it contains more in- termined by inspection, since the line shapes are not uniform
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FIG. 2. A closer view of two nonadjacent lines in Fig. 1. The ~% osl
line shapes clearly differ, so that their relative heights are not mean®
ingful. X 04
(=X
(see Fig. 2 This is a common problem in spectral analysis 021 l
and is often resolved by imposing a more uniform line shape,
through convolution of the signal with an appropriate smooth . . . . . . . . .
“response functionT13]. The response function is typically 50 S5 60 65 70 75 8 8 90 95 100
a peaked function that falls to zero in both directions from its X

maximum. Gaussian functions are positive definite and de- FiG. 3. The result of computing E¢5) using the first 16 zeros
cay rapidly. They are also convenient to use since their shapgd o=0.05. The range is the same as in Fig. 1. Note that lines
only depends on a single paramefiite variancgand there-  with height less than unity occur at powers of pringfsand have

fore can be easily controlled. Thus, we next convolve thisyejght 1h (for example, the line at2=64 has height 1/60.16).
approximate density(x) (i.e., smooth term and truncated

serie$ with an unnormalizedGaussian of variance: the response function, they do have nonzero widths and so
. their effective 5-function “heights” D,, are equal to the ar-

* — / oy eas. In this sense, the convolution procedure is equivalent to
PO Gyl(X) L P(X)Gy(x=x)a, ® directly integrating the area under each line of the signal.
However, the convolution technique is much simpler and
where avoids errors that can arise from the long oscillatory tails of
individual lines. Note that this procedure cannot resolve two

G,(x)=exp —x%/25?). (6) adjacent lines when the spacing between them is smaller than

o and thuso ,,=1/4.
The effect of the convolution is that rapidly oscillating fea- We have computed E@5) for the range of interest in Fig.
tures are washed out and smooth peaked features afe This is shown in Fig. 3 using=0.05. We note here that
smeared into the shape of the response function. If the linethe heights do not depend on the specific value afue to
were perfectd functions of heightD,, then from Eq.(5), the fact the Guassian is not normalized. As more terms are
these would be replaced Iy,G,(X—X,), i.e., Gaussians of included in the sum, the natural linewidths decrease and the
varianceo with heightD, atx=x,,. Of course, the lines are convolution becomes more accurate. It is then possible to
not s-function spikes, so that the resultant line shapes are ngiroduce high-resolution lines by using smaller variances. For
exactly Gaussian, but as long as the intrinsic linewidth isexample, using 10zeros, we produced lines with a variance
sufficiently small compared to the variance, the deviationo=0.01. It would be useful to know how many primes can
from a perfect Gaussian is quite negligible. Therefore, thébe resolved using a prescribed number of zeros. In the
convolution produces a series of Gaussian lines, each of theresent scheme, one simply observes where the lines of the
same width. The key point is that the line shapes are nowriginal signal develop a sufficiently large width. The impor-
essentially uniform, so that the actual heights can be meanant criterion here is that all linewidths should be at least
ingfully compared and immediately interpreted as the relasmaller than the mean spacing between all integer powers of
tive intensities. It is important to keep in mind that since theprimes in the interval of interest. Of course, the width of any
response function has a maximum height of unity, the heighline is related to the number of terms used in truncating the
of a line after convolution should be the area under that lineseries. Although this relationship can be determined, there is
before convolution. The reason for this is that although thestill the problem that all the lines have different shapes.
lines of the original signal act liké functions with respectto Thus, we shall find it more useful to determine, for what
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values ofx the truncated formula can no longer produce linespowep. We want to construct a series as described above,

of a specific uniform shape. which converges to this density, that is, we want to find a
Gaussian sum rule for Riemann’s series. To do this, we con-
B. Sum rule and numerical convergence volve Riemann’s series term by term with a Gaussian

smoothing function. For the following calculation, we will

The convergence of the series can be examined using a .. N o
more controlled application of the convolution procedure de_c?efme S.()=alnx and A(x)=—2/JxInx. Then, we can

scribed above. The general idea is to construct a ségasn  Write Riemann’s formula ap(x) = A(X) 2 ,Re{exdiS.(¥)]}.
rule”) that absolutely converges to a “coarse-grained” ver-1he Gaussian sum rule is

sion of the exact density. This density is obtained by replac- ~

ing all spikes of the exact density by smooth peaked funcPo(X) =P(X)* Gy(X)

tions. One immediate advantage is improved convergence, © o,

since it is easier to reproduce the well-defirseaoothpeaked =J p(x")e~ XDy

functions of a coarse-grained density using a truncated sum ‘°°

rule than it is to reproduce spikes using the original truncated o
series. However, for our purposes, the more important reason = >, Re{f A(x")eiSa g (xxVZo?gur | s g
for using a sum rule is t@ontrol the convergence of the “« o
series. This will become evident after the sum rule is given. (7)

The sum rule itself is obtained from a direct convolution of
the original series with a “smoothing function,” that is, some FOr o< o, the Gaussian rapidly decays to zero. This im-
smooth function whose Fourier coefficients rapidly decreaseplies that the main contribution to the integral comes from a
(Since the original series consists of cosines, the resultingmall interval centered abowt’ =x. Elsewhere, the inte-
integral is essentially a cosine transform of the smoothing@rand is practically zero. Thus, we make two approximations
function) to proceed further. First, amplitude functiéq(x’) changes
The above discussion is quite general. We now connectery slowly and on the small interval of interegi(x’)
this idea with the numerical calculations described above~A(X). Second, phase functioB,(x’) can be replaced by
Assume that the coarse-grained density consists of a set @6 Taylor series expansion abowt =x: S,(x')=S,(X)
Gaussian functions of varianeecentered at each primer  +S,(x)(x’—x)+---. If we retain the leading-order term
integer power with heights equal to unityor the reciprocal only,

Pe(X)~A(X) 2 Re[ fw ei[sa(x)+s;(x)(x'x)]e(xx')2/zgzdx,]
« —o0

=A(x)2 Re[ ei[sa(x)—xs;(x)]e—lezazj'm e[x’z(2x+2ia—28;(x))x’]/20-2dxr]
o — 0

=\270A(X)>, e~ ”ZSZZ(X)’ZRe{e‘Sa(X)}, (8)

where we have used the standard result for the Gaussiarsolved. One way to determine this is as follows. First,
integral[14]. Finally, the Gaussian sum rule for Riemann’s specify the value of the largest zer@,,,,, and include all
series is Zerosa < amay- 1hen, there exists a set of values X, for
which the exponential factor falls below some threshold pa-
5 2\/;0 rameters. This condition immediately gives the simple re-
Po(X)=— —=——
\/;Inx a

2 2,52
> e 7 2coqainx).  (9) lation
o

This sum rule explicitly shows the effect of convolution on Xmax— | 77—
the series; each term is modulated by an exponential factor. V—2In(e)
This factor essentially controls the convergence of the series

for all values ofx. Although the orginal series is only condi- where 0<e <M. FoOr a> apa and X<Xp, all terms are
tionally convergent, as long as the correct ordering is usedgxponentially smaller thaa and are thus numerically insig-
this sum rule isabsolutelyconvergent. As stated above, we nificant. The choice of parameterdepends on the desired
seek an approximate relation between the maximum zerprecision of a resolved line. An upper boultfor the pa-
included in the sum and the maximum prime that can be@ameter is the value of the exponential facter ¥?) at its

Amax; (10
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FIG. 4. Sum rulg9), using the first 16 zeros andr=0.1. The FIG. 5. Sum rule(9), using the first 10 zeros andr=0.1. The

lower window shows a closer view of the lines in interval 0.99 lower window shows a closer view of the lines in interval 0.99

<p,(x)<1. Formula(10) indicates that fox<xX;,=373, all lines  <p,(x)<1. Formula(10) indicates that forx<xpa~—2832, all

should be resolved and intensities should have errors lessothan lines should be resolved and intensities should have errors less than
2

=0.01. o°=0.01.

. . . L smaller. Of course, we have complete control of this error
inflection pointx, = (1/y3)oa [15]. This implies Xma<x . through our freedom in specifying In the case of the origi-
The lower bound can be as small as machine 280ex-  ng| truncated series, it is not immediately obvious what the

16 H .
ample, 10 ). However, there is no reason for such an ex-grrors are, but they can be determined through more elabo-
treme choice since we are mostly interested in determininggte analysis.

where numerical errors become significéing., where lines
are no longewisibly resolved and the intensities are errone-
ous by more than 1% Of course, higher precision can be
imposed at the cost of resolving fewer primes. But, since the By writing {(y+it) =|{(y+it)|exgd —i6,(t)], we see that
improved precision will not be apparent in the graph ofall the information about the zeros along thaxis is con-
p(X), there is no compelling reason to choose exceedinglyained in phase,(t). This has to jump byr to accomodate
small values. For our purposes, a convenient choice is the sign change ig at every zero, and it can be shown that
=e 2 the oscillating part of the density of the zeros on the critical
We now provide a few examples to illustrate the utility of line is proportional to the derivative of the imaginry part of
relation (10). As the first example, we taken,=9878,  In {(t) with respect ta [10]. On the other hand, we see from
which is the 16th zero. Using the above formulavith o Eq. (2) that the appropriate contour integral over({p) also
=0.1) yieldsx,,=373. In Fig. 4, we evaluate E() using  yieldsp(x) relating to the primes. Thus, the phase of the zeta
the first 1d zeros(and include the smooth tejmOne can  function, as defined above, connects the Riemann zeros to
clearly see significant errors for>400. As the second ex- the primes.
ample, we takeyn,=74921(the 1Gth zerg. The formula As mentioned above, if the series is truncated, the signal
then givesx,—2832. In Fig. 5, we truncate E¢) at this  gradually dies out ag increases. This can be understood by
value of an, and observe significant errors occur fer  noting that due to the logarithmic dependence, each term
>2900. produces an oscillation whose period continually increases
An additional benefit of the sum rule is that it gives us anwhile its amplitude decays. Clearly, more high frequency
immediate measure of the error incurred from truncation(large @) terms are required for sufficient constructive inter-
The largest errors are in the vicinity ®f,.,, where there are ference. This explains the fact that lines at small values of
contributionsO(¢e) that have been excluded. For all other are resolved more quickly than at larger values. Although the
values of Xx<X,., the excluded terms are exponentially higher frequency terms are responsible for short-range

IV. DISCUSSION AND CONCLUSION
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oscillations and one could imagine exclusive use of thosgories usually have amplitudes that depend on the p1i8ik
terms rather than lower frequency terms, the difficulty is theln the event that there is a fortuitous cancellation of index
conditional convergence of the series and the fact that all thi is unlikely that the energy dependence in the denominator
terms are equally important. Unfortunately, this implies thatof the oscillating term as well as the TF term can then be
Riemann’s formula is impractical for resolving lines at large generated consistently by the same Hamiltonian. Conse-
primes. This is also consistent with E4.0). If one is inter-  quently, Riemann’s formula is not a trace formula of dynami-
ested in using Riemann’s series to find large primes, for exeal origin.
ample, of the order of £8°°% then one requires an accurate ~ With regard to spectral statistics, it is well known that
knowledge of roughly the same number of zeros. nearest-neighbor spacingdNS) [19] of the Riemann zeros
We emphasize that Riemann’s formula is correct only ifobey the GUE distribution of random matrix theory, charac-
the Riemann hypothesis is true. Otherwise, if a pair of zeroseristic of a chaotic quantum system without time-reversal
occur atB.=y*ia, factorx*? in the denominator of the symmetry[20,21]. The same zeros also generate the primes
oscillating term of Eq(3) should be replaced by*~7 [9].  through Riemann’s formul#3). As mentioned earlier, the
An interesting numerical experiment is to move the zeros offNNS distribution of the primes is Poisson-likg], with some
the critical line, that is, to arbitrarily change their real parts.level repulsion, which, if at all of dynamic origin, hints only
We find that this still produces lines at integer powers ofto near integrabilityf1,16]. Thus, it is quite remarkable that
primes but the relative intensities are incorrect. This is interthe highly-correlated sequence of the zeros can interfere to
esting since it demonstrates that the location of the primeproduce the almost-uncorrelated sequence of the primes.
depends only on the imaginary part of the zero. The real part In conclusion, we have demonstrated that the spectrum of
only affects the intensities, which are anyway not evidenthe primes and their integer powers can be accurately gener-
from a direct evaluation of the series. This provides anotheated from a sum of periodic terms, each term involving a
motivation for the numerical and analytical procedures dezero of the zeta function. This is in the spirit of semiclassical
scribed in this paper. periodic orbit theory, where the individual levels of a quan-
It is natural to compare the oscillating densjitgx) with ~ tum spectrum may be resolved from a sum of oscillatory
the semiclassical trace formUa,16] of a dynamical system. terms, each arising from periodic orbits. Despite the accuracy
One could identifya as an orbit label, one for each zero of Of the generated spectrum, Riemann’'s formula is not a trace
the zeta function ang as the single-particle energy variable. formula. However, this does not imply that there is no such
Then, p(x) in Eq. (3) may be interpreted as the density of formula, and it would still be interesting to understand the
states, as a function of energy with the first term on the RHSPectrum of the primes in terms of periodic orbits. This could
corresponding to the smooth Thomas-Fe(fF) contribu-  Provide insight into the structure of a possible trace formula
tion [17]. In the oscillating part, argumeni Inx of the co-  for the primes. If this formula could be found, the remaining
sine term should then correspond to the ac8qg(x) of orbit challenge would be to obtain the corresponding Hamiltonian.

«a. Note, however, that there are no implicit repetition indi-
ces in Eq.(3), thereby implying that even if one gives a
dynamical interpretation tp(x), the orbits are not periodic. We acknowledge Ranjan Bhaduri, Randy Dumont, Avi-
This is in direct contrast to the trace formula for the Riemanmash Khare, John Nieminen, Muoi Tran, and Jim Waddington
zeros, in which the orbits are periodic with primitive period for useful discussions, and Andrew Odlyzko for supplying
In p for each primd4]. Of course, the most striking feature is the Riemann zeros. This work was financially supported by
that the amplitude has na dependence. Even oscillatory the Natural Sciences and Engineering Research Council of
contributions to the density of states from nonperiodic trajecCanadaNSERQ.
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