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Zeta function zeros, powers of primes, and quantum chaos
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~Received 29 April 2003; published 15 August 2003!

We present a numerical study of Riemann’s formula for the oscillating part of the density of the primes and
their integer powers. The formula consists of an infinite series of oscillatory terms, one for each zero of the zeta
function on the critical line, and was derived by Riemann in his paper on primes, assuming the Riemann
hypothesis. We show that high-resolution spectral lines can be generated by the truncated series at all integer
powers of primes and demonstrate explicitly that the relative line intensities are correct. We then derive a
Gaussian sum rule for Riemann’s formula. This is used to analyze the numerical convergence of the truncated
series. The connections to quantum chaos and semiclassical physics are discussed.
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I. INTRODUCTION

The Riemann zeta function is at the heart of num
theory and has also played a pivotal role in the study
quantum chaos@1#. There is a deep connection between t
complex zeros of the zeta function and random matrix the
@2#. The zeros possess the same statistical properties a
energy eigenvalues of a dynamical Hamiltonian that is n
integrable and whose dynamics are not time-reversal inv
ant. Unfortunately, this Hamiltonian is not known in terms
its dynamical variables. The main source of insight into t
unknown quantum chaotic system comes from Gutzwille
pioneering work@3#, which expresses the oscillatory part
the quantum density of states as a sum over classical per
orbits. ~Such sums are now referred to as trace formulas! It
is well known that the oscillatory part of the density of th
Riemann zeros is given by a Gutzwiller-like sum, with o
periodic term for every integer power of a prime number@4#.
~A smoothed density of the Riemann zeros has also b
studied in Ref.@5#.! From this perspective, one can infer th
a spectrum consisting of the Riemann zeros is generated
Hamiltonian ~albeit unknown! whose classical orbits hav
actions that are logarithms of primes and integer powers
primes.

Conversely, one could ask whether it is also possible
calculate the prime number sequence from a sum of osc
tory terms, with one term for every zero of the zeta functio
Although less widely known, such a series was actua
given by Riemann himself@6#. Riemann derived an exac
formula for the density of the primes~and their integer pow-
ers! that can be expressed as the sum of a smooth func
and an infinite series of oscillatory terms involving the co
plex zeros of the zeta function. The smooth part has b
thoroughly studied in the context of the prime number th
rem whereas the oscillatory part has been largely igno
Interestingly, it is the latter that contains the essential inf
mation about the location of the primes, as shown bel
There is a vast literature on the distribution of the prim
numbers. It is recognized that their distribution exhibits g
bal regularity and local irregularity@7#. The nearest-neighbo
spacings~NNS! of the primes is known to be Poisson-lik
@8#, corresponding to an almost uncorrelated random dis
bution. This is very different in character from the Gauss
1063-651X/2003/68~2!/026206~7!/$20.00 68 0262
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unitary ensemble~GUE! distribution of the Riemann zeros
Nevertheless, it is possible to generate the almo
uncorrelated sequence of the primes from the interferenc
the highly-correlated Riemann zeros.

As mentioned above, from the perspective of semicla
cal periodic orbit theory, the density of the Riemann ze
has the structure of a dynamical trace formula with perio
orbits. It is natural to ask whether Riemann’s formula is
trace formula for the primes. Despite having the oscillato
terms, as discussed below, Riemann’s formula is not a tr
formula of dynamical origin. But, this does not preclude t
existence of a trace formula for the primes. If one does ex
then this would support the notion that there exists a Ham
tonian system whose quantum spectrum is the primes. In
case, the exclusion of Riemann’s formula as a trace form
suggests that there would be no correspondence betwee
classical dynamics and the Riemann zeros for this syste

The purpose of this paper is to study the density of
primes from the perspective of numerical semiclassics.
our knowledge, Riemann’s series has not been studied
merically. We first verify that Riemann’s formula does pr
duce spectral lines at the positions of the primes and t
integer powers, even when the series is truncated. This is
completely unexpected since Riemann’s series conve
conditionally to the exact density which is a set ofd-function
spikes. However, thed functions arise from theentireseries.
The truncated series is an approximation to the exact den
It does not yield spikes, but rather lines of various width
heights, and~unknown! shapes and it is not at all obviou
that the relative line intensities of the truncated series
correct. We examine this problem both numerically and a
lytically. We then provide a simple rule for estimating th
value of the largest zero required to sufficiently resolve in
vidual lines of a specific shape in some interval of intere
and describe how to control the error incurred from a tru
cation of the series.

II. RIEMANN’S FORMULA

We start from the Euler product formula

z~b!5)
p

~12p2b!21, Reb.1, ~1!
©2003 The American Physical Society06-1
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where the product is over all primesp. It follows that
(p(n51

` (1/n)exp(2nb ln p)5ln z(b). Dividing both sides
by b and then taking the inverse Laplace transform of b
sides with respect toE, we immediately obtain

N~E!5(
p

(
n

1

n
Q~E2 ln pn!5

1

2p i Ea2 i`

a1 i` ln z~b!

b
ebEdb,

~2!

wherea.1. Riemann evaluated the right-hand side~RHS!
of Eq. ~2! to obtainN(E). Upon differentiation with respec
to E and the subsequent substitutionx5eE, we obtain den-
sity r(x) of pn/n along the real axisx as

r~x!5
1

ln x
2

1

x~x221!ln x
22 (

a.0

cos~a ln x!

x1/2ln x
, ~3!

wherex.1. This formula assumes the Riemann hypothe
which states that all the infinite numbers of complex zeros
the zeta function lie on the critical lineb5(1/26 ia), where
a is real and positive. Note that explicit use of the symme
of the complex zeros has been made to reduce the sum
tion to cosine functions. A generalized version of the R
mann formula, where the zeros may lie anywhere in the c
cal strip, is given in Ref.@9#. We shall denote the sum ove
the oscillatory terms on the RHS of Eq.~3! as r̃(x). Since
Eq. ~3! is exact, it is clear that thed-function spikes ofr(x)
must be generated from the interference of the terms inr̃(x).
From our experience in periodic orbit quantization@10#, we
know that a coarse-grained version of the exact density
states can be reproduced even from a truncated periodic
sum. Therefore, in the following section, we focus on t
numerical analysis of the truncated series.

Before presenting the results, however, we briefly revi
the pioneering numerical work of Riesel and Go¨hl @11#. The
left-hand side of Eq.~2! is a set of step functions, with un
steps at every primep, one-half steps atp2, one-third steps a
p3, and so on, and may be obtained by taking the cont
integral of lnz(b)/b on the RHS of the equation. Riemann@6#
denotes this function byf (x) and Edwards byJ(x) @12#. The
number of primes less thanx, denoted byp(x), may be
expressed in terms off (x) as

p~x!5 (
n51

`
m~n! f ~x1/n!

n
, ~4!

where m(n) is the Möbius function @12#. The modulating
effect of the oscillatory terms due to the first 29 pairs of t
complex Riemann zeros was numerically examined by R
sel and Go¨hl @11# in 1970. This early work showed the ap
proximate formation of the first few steps at the prime nu
bers, and modulations for some larger primes. Note
series~4! requires a knowledge of the Mo¨bius function, and
is much more complicated than Eq.~3!. Riesel and Go¨hl
actually replaced the sum over the Mo¨bius functions by the
Gram series, involving factorials which are difficult to com
pute accurately for large integers. In this paper, we s
rather study formula~3! for r(x) since it contains more in
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formation than the formula for the density of the primes~no
powers!, which can be obtained from the derivative ofp(x).

III. NUMERICS

Numerically, we can only evaluate a finite number
terms from Riemann’s infinite series. Although it wou
seem by inspection that all the terms of the series are equ
important and that there is no optimal ordering of the term
Riemann states that the series is conditionally converg
and that it must be summed in the order of increasing siz
a. ~For any series whose convergence is conditional,
order of summation must be specified, since different ord
ings produce different results.! In this case, the ‘‘natural or-
der’’ is the correct one. Riemann goes on to state that w
this ordering, the truncated series should give an approxi
tion to the density of primes~and their powers!, but that
using a different ordering, the resulting finite series cou
approach arbitrary real values. We have verified this num
cally and found that using finite sets of zeros, chosen acc
ing to different rules, yields incorrect results. Thus, for t
numerical work that follows, we use the correct ordering.

A. Line intensities of the truncated series

We first computed Eq.~3! using the first 104 zeros and
observed lines at the positions of the primes and their inte
powers forx,5000. However, forx.2000, many lines can-
not be fully resolved and the signal eventually dies out. T
is due to truncation, since only a small number of zeros h
been included.~This will be discussed in more detail below!
Nevertheless, even this small number of zeros yields nar
lines at the lowest primes. In Fig. 1, we display the result
xP@1.5,100#. Although one can clearly observe lines at t
positions of the primes, the relative intensities cannot be
termined by inspection, since the line shapes are not unif

FIG. 1. The result of computing Eq.~3!, using the first 104 zeros
for xP@1.5,100#. The inset shows a closer view of three lines th
appear forxP@77,84#. The three line shapes are similar, so th
their relative heights are somewhat meaningful. However, the
shapes vary considerably throughout the entire range so that he
cannot be immediately interpreted as relative intensities.
6-2
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ZETA FUNCTION ZEROS, POWERS OF PRIMES, AND . . . PHYSICAL REVIEW E68, 026206 ~2003!
~see Fig. 2!. This is a common problem in spectral analys
and is often resolved by imposing a more uniform line sha
through convolution of the signal with an appropriate smo
‘‘response function’’@13#. The response function is typicall
a peaked function that falls to zero in both directions from
maximum. Gaussian functions are positive definite and
cay rapidly. They are also convenient to use since their sh
only depends on a single parameter~the variance! and there-
fore can be easily controlled. Thus, we next convolve t
approximate densityr(x) ~i.e., smooth term and truncate
series! with an unnormalizedGaussian of variances:

r~x!* Gs~x!5E
1

`

r~x8!Gs~x2x8!dx8, ~5!

where

Gs~x!5exp~2x2/2s2!. ~6!

The effect of the convolution is that rapidly oscillating fe
tures are washed out and smooth peaked features
smeared into the shape of the response function. If the l
were perfectd functions of heightDn , then from Eq.~5!,
these would be replaced byDnGs(x2xn), i.e., Gaussians o
variances with heightDn at x5xn . Of course, the lines are
not d-function spikes, so that the resultant line shapes are
exactly Gaussian, but as long as the intrinsic linewidth
sufficiently small compared to the variance, the deviat
from a perfect Gaussian is quite negligible. Therefore,
convolution produces a series of Gaussian lines, each o
same width. The key point is that the line shapes are n
essentially uniform, so that the actual heights can be me
ingfully compared and immediately interpreted as the re
tive intensities. It is important to keep in mind that since t
response function has a maximum height of unity, the he
of a lineafter convolution should be the area under that li
beforeconvolution. The reason for this is that although t
lines of the original signal act liked functions with respect to

FIG. 2. A closer view of two nonadjacent lines in Fig. 1. Th
line shapes clearly differ, so that their relative heights are not me
ingful.
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the response function, they do have nonzero widths and
their effectived-function ‘‘heights’’ Dn are equal to the ar-
eas. In this sense, the convolution procedure is equivalen
directly integrating the area under each line of the sign
However, the convolution technique is much simpler a
avoids errors that can arise from the long oscillatory tails
individual lines. Note that this procedure cannot resolve t
adjacent lines when the spacing between them is smaller
s and thussmax51/4.

We have computed Eq.~5! for the range of interest in Fig
1. This is shown in Fig. 3 usings50.05. We note here tha
the heights do not depend on the specific value ofs due to
the fact the Guassian is not normalized. As more terms
included in the sum, the natural linewidths decrease and
convolution becomes more accurate. It is then possible
produce high-resolution lines by using smaller variances.
example, using 105 zeros, we produced lines with a varianc
s50.01. It would be useful to know how many primes c
be resolved using a prescribed number of zeros. In
present scheme, one simply observes where the lines o
original signal develop a sufficiently large width. The impo
tant criterion here is that all linewidths should be at le
smaller than the mean spacing between all integer power
primes in the interval of interest. Of course, the width of a
line is related to the number of terms used in truncating
series. Although this relationship can be determined, ther
still the problem that all the lines have different shap
Thus, we shall find it more useful to determine, for wh

n-

FIG. 3. The result of computing Eq.~5! using the first 104 zeros
and s50.05. The range is the same as in Fig. 1. Note that li
with height less than unity occur at powers of primespn and have

height 1/n ~for example, the line at 26564 has height 1/650.16̇).
6-3
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values ofx the truncated formula can no longer produce lin
of a specific uniform shape.

B. Sum rule and numerical convergence

The convergence of the series can be examined usi
more controlled application of the convolution procedure
scribed above. The general idea is to construct a series~‘‘sum
rule’’ ! that absolutely converges to a ‘‘coarse-grained’’ v
sion of the exact density. This density is obtained by repl
ing all spikes of the exact density by smooth peaked fu
tions. One immediate advantage is improved converge
since it is easier to reproduce the well-definedsmoothpeaked
functions of a coarse-grained density using a truncated
rule than it is to reproduce spikes using the original trunca
series. However, for our purposes, the more important rea
for using a sum rule is tocontrol the convergence of the
series. This will become evident after the sum rule is giv
The sum rule itself is obtained from a direct convolution
the original series with a ‘‘smoothing function,’’ that is, som
smooth function whose Fourier coefficients rapidly decrea
~Since the original series consists of cosines, the resul
integral is essentially a cosine transform of the smooth
function.!

The above discussion is quite general. We now conn
this idea with the numerical calculations described abo
Assume that the coarse-grained density consists of a s
Gaussian functions of variances centered at each prime~or
integer power! with heights equal to unity~or the reciprocal
si
’s

n
ct
ri
i-
e
e
e
b
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power!. We want to construct a series as described abo
which converges to this density, that is, we want to find
Gaussian sum rule for Riemann’s series. To do this, we c
volve Riemann’s series term by term with a Gauss
smoothing function. For the following calculation, we wi
define Sa(x)5a ln x and A(x)522/Axln x. Then, we can
write Riemann’s formula asr̃(x)5A(x)(aRe$exp@iSa(x)#%.
The Gaussian sum rule is

r̃s~x!5 r̃~x!* Gs~x!

5E
2`

`

r̃~x8!e2(x2x8)2/2s2
dx8

5(
a

ReH E
2`

`

A~x8!eiSa(x8)e2(x2x8)2/2s2
dx8J , x.1.

~7!

For s<smax, the Gaussian rapidly decays to zero. This i
plies that the main contribution to the integral comes from
small interval centered aboutx85x. Elsewhere, the inte-
grand is practically zero. Thus, we make two approximatio
to proceed further. First, amplitude functionA(x8) changes
very slowly and on the small interval of interest,A(x8)
'A(x). Second, phase functionSa(x8) can be replaced by
its Taylor series expansion aboutx85x: Sa(x8)5Sa(x)
1Sa8 (x)(x82x)1•••. If we retain the leading-order term
only,
r̃s~x!'A~x!(
a

ReH E
2`

`

ei [Sa(x)1Sa8 (x)(x82x)]e2(x2x8)2/2s2
dx8J

5A~x!(
a

ReH ei [Sa(x)2xSa8 (x)]e2x2/2s2E
2`

`

e2[x822(2x12is2Sa8 (x))x8]/2s2
dx8J

5A2psA~x!(
a

e2s2Sa8
2(x)/2Re$eiSa(x)%, ~8!
st,

pa-
-

-
d

where we have used the standard result for the Gaus
integral @14#. Finally, the Gaussian sum rule for Riemann
series is

r̃s~x!52
2A2ps

Axln x
(
a

e2s
2
a

2
/2x

2
cos~a ln x!. ~9!

This sum rule explicitly shows the effect of convolution o
the series; each term is modulated by an exponential fa
This factor essentially controls the convergence of the se
for all values ofx. Although the orginal series is only cond
tionally convergent, as long as the correct ordering is us
this sum rule isabsolutelyconvergent. As stated above, w
seek an approximate relation between the maximum z
included in the sum and the maximum prime that can
an

or.
es

d,

ro
e

resolved. One way to determine this is as follows. Fir
specify the value of the largest zero,amax, and include all
zerosa<amax. Then, there exists a set of valuesx,xmax for
which the exponential factor falls below some threshold
rameter«. This condition immediately gives the simple re
lation

xmax5F s

A22 ln~«!
Gamax, ~10!

where 0,«,M . For a.amax and x<xmax, all terms are
exponentially smaller than« and are thus numerically insig
nificant. The choice of parameter« depends on the desire
precision of a resolved line. An upper boundM for the pa-
rameter is the value of the exponential factor (e23/2) at its
6-4
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ZETA FUNCTION ZEROS, POWERS OF PRIMES, AND . . . PHYSICAL REVIEW E68, 026206 ~2003!
inflection point xI5(1/A3)sa @15#. This impliesxmax,xI .
The lower bound can be as small as machine zero~for ex-
ample, 10216). However, there is no reason for such an e
treme choice since we are mostly interested in determin
where numerical errors become significant~i.e., where lines
are no longervisibly resolved and the intensities are erron
ous by more than 1%!. Of course, higher precision can b
imposed at the cost of resolving fewer primes. But, since
improved precision will not be apparent in the graph
rs(x), there is no compelling reason to choose exceedin
small values. For our purposes, a convenient choice i«
5e27/2.

We now provide a few examples to illustrate the utility
relation ~10!. As the first example, we takeamax89878,
which is the 104th zero. Using the above formula~with s
50.1) yieldsxmax8373. In Fig. 4, we evaluate Eq.~9! using
the first 104 zeros~and include the smooth term!. One can
clearly see significant errors forx.400. As the second ex
ample, we takeamax874921 ~the 105th zero!. The formula
then givesxmax82832. In Fig. 5, we truncate Eq.~9! at this
value of amax and observe significant errors occur forx
.2900.

An additional benefit of the sum rule is that it gives us
immediate measure of the error incurred from truncati
The largest errors are in the vicinity ofxmax, where there are
contributionsO(«) that have been excluded. For all oth
values of x,xmax, the excluded terms are exponentia

FIG. 4. Sum rule~9!, using the first 104 zeros ands50.1. The
lower window shows a closer view of the lines in interval 0.
,rs(x),1. Formula~10! indicates that forx<xmax8373, all lines
should be resolved and intensities should have errors less thas2

50.01.
02620
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smaller. Of course, we have complete control of this er
through our freedom in specifying«. In the case of the origi-
nal truncated series, it is not immediately obvious what
errors are, but they can be determined through more ela
rate analysis.

IV. DISCUSSION AND CONCLUSION

By writing z(g1 i t )5uz(g1 i t )uexp@2iug(t)#, we see that
all the information about the zeros along thet axis is con-
tained in phaseug(t). This has to jump byp to accomodate
the sign change inz at every zero, and it can be shown th
the oscillating part of the density of the zeros on the criti
line is proportional to the derivative of the imaginry part
ln z(t) with respect tot @10#. On the other hand, we see from
Eq. ~2! that the appropriate contour integral over lnz(b) also
yieldsr(x) relating to the primes. Thus, the phase of the z
function, as defined above, connects the Riemann zero
the primes.

As mentioned above, if the series is truncated, the sig
gradually dies out asx increases. This can be understood
noting that due to the logarithmic dependence, each t
produces an oscillation whose period continually increa
while its amplitude decays. Clearly, more high frequen
~largea) terms are required for sufficient constructive inte
ference. This explains the fact that lines at small values ox
are resolved more quickly than at larger values. Although
higher frequency terms are responsible for short-ra

FIG. 5. Sum rule~9!, using the first 105 zeros ands50.1. The
lower window shows a closer view of the lines in interval 0.9
,rs(x),1. Formula ~10! indicates that forx<xmax82832, all
lines should be resolved and intensities should have errors less
s250.01.
6-5
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SAKHR, BHADURI, AND van ZYL PHYSICAL REVIEW E68, 026206 ~2003!
oscillations and one could imagine exclusive use of th
terms rather than lower frequency terms, the difficulty is
conditional convergence of the series and the fact that all
terms are equally important. Unfortunately, this implies th
Riemann’s formula is impractical for resolving lines at lar
primes. This is also consistent with Eq.~10!. If one is inter-
ested in using Riemann’s series to find large primes, for
ample, of the order of 10250 000, then one requires an accura
knowledge of roughly the same number of zeros.

We emphasize that Riemann’s formula is correct only
the Riemann hypothesis is true. Otherwise, if a pair of ze
occur atb65g6 ia, factor x1/2 in the denominator of the
oscillating term of Eq.~3! should be replaced byx(12g) @9#.
An interesting numerical experiment is to move the zeros
the critical line, that is, to arbitrarily change their real par
We find that this still produces lines at integer powers
primes but the relative intensities are incorrect. This is in
esting since it demonstrates that the location of the prim
depends only on the imaginary part of the zero. The real
only affects the intensities, which are anyway not evid
from a direct evaluation of the series. This provides anot
motivation for the numerical and analytical procedures
scribed in this paper.

It is natural to compare the oscillating densityr̃(x) with
the semiclassical trace formula@3,16# of a dynamical system
One could identifya as an orbit label, one for each zero
the zeta function andx as the single-particle energy variabl
Then,r(x) in Eq. ~3! may be interpreted as the density
states, as a function of energy with the first term on the R
corresponding to the smooth Thomas-Fermi~TF! contribu-
tion @17#. In the oscillating part, argumenta ln x of the co-
sine term should then correspond to the actionSa(x) of orbit
a. Note, however, that there are no implicit repetition ind
ces in Eq.~3!, thereby implying that even if one gives
dynamical interpretation tor̃(x), the orbits are not periodic
This is in direct contrast to the trace formula for the Riema
zeros, in which the orbits are periodic with primitive perio
ln p for each prime@4#. Of course, the most striking feature
that the amplitude has noa dependence. Even oscillator
contributions to the density of states from nonperiodic traj
s-
in

k,
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tories usually have amplitudes that depend on the orbit@18#.
In the event that there is a fortuitous cancellation of indexa,
it is unlikely that the energy dependence in the denomina
of the oscillating term as well as the TF term can then
generated consistently by the same Hamiltonian. Con
quently, Riemann’s formula is not a trace formula of dynam
cal origin.

With regard to spectral statistics, it is well known th
nearest-neighbor spacings~NNS! @19# of the Riemann zeros
obey the GUE distribution of random matrix theory, chara
teristic of a chaotic quantum system without time-rever
symmetry@20,21#. The same zeros also generate the prim
through Riemann’s formula~3!. As mentioned earlier, the
NNS distribution of the primes is Poisson-like@8#, with some
level repulsion, which, if at all of dynamic origin, hints onl
to near integrability@1,16#. Thus, it is quite remarkable tha
the highly-correlated sequence of the zeros can interfer
produce the almost-uncorrelated sequence of the primes

In conclusion, we have demonstrated that the spectrum
the primes and their integer powers can be accurately ge
ated from a sum of periodic terms, each term involving
zero of the zeta function. This is in the spirit of semiclassi
periodic orbit theory, where the individual levels of a qua
tum spectrum may be resolved from a sum of oscillato
terms, each arising from periodic orbits. Despite the accur
of the generated spectrum, Riemann’s formula is not a tr
formula. However, this does not imply that there is no su
formula, and it would still be interesting to understand t
spectrum of the primes in terms of periodic orbits. This cou
provide insight into the structure of a possible trace form
for the primes. If this formula could be found, the remaini
challenge would be to obtain the corresponding Hamiltoni
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